A laser-based instrument being developed for the International
Space Station will provide a unique 3-D view of Earth’s forests, helping to
fill in missing information about their role in the carbon cycle.
Called the Global Ecosystem Dynamics Investigation (GEDI) lidar, the instrument
will be the first to systematically probe the depths of the forests from space.
The system is one of two instrument proposals recently selected for NASA’s Earth Venture
Instrument program and is being led by the University of Maryland, College
Park. The instrument will be built at NASA’s Goddard Space Flight Center in
Greenbelt, Maryland.
“As a global leader in research and discovery related to environmental
sustainability, the University of Maryland is extraordinarily proud to be a
part of this new venture with our partners from NASA,” said University of
Maryland Vice President and Chief Research Officer Patrick O'Shea. “GEDI lidar
will have a tremendous impact on our ability to monitor forest degradation,
adding to the critical data needed to mitigate the effects of climate change.”
“GEDI will be a tremendous new resource for studying Earth’s
vegetation,” said Piers Sellers, deputy director of Goddard’s Sciences and
Exploration Directorate. “In particular, the GEDI data will provide us with
global-scale insights into how much carbon is being stored in the forest
biomass. This information will be particularly powerful when combined with the historical
record of changes captured by the U.S.’s long-standing program of
Earth-orbiting satellites, such as Landsat and MODIS.” The MODIS, or Moderate Resolution Imaging
Spectroradiometer, is an instrument that flies aboard NASA’s Terra and Aqua
satellites.
By revealing the 3-D architecture of forests in unprecedented detail,
GEDI will provide crucial information about the impact that trees have on the
amount of carbon in the atmosphere. Although it is well-established that trees
absorb carbon and store it long-term, scientists have not quantified exactly
how much carbon forests contain. As a result, it’s not possible to determine
how much carbon would be released if a forest were destroyed, nor how well
emissions could be countered by planting new trees.
"One of the most poorly quantified components of the carbon cycle
is the net balance between forest disturbance and regrowth,” said Ralph Dubayah,
the GEDI principal investigator at the University of Maryland. “GEDI will help
scientists fill in this missing piece by revealing the vertical structure of
the forest, which is information we really can’t get with sufficient accuracy
any other way.”
GEDI can do this because it’s a laser-based system, called a lidar,
that can measure the distance from the space-based instrument to Earth’s
surface with enough accuracy to detect subtle variations, including the tops of
trees, the ground, and the vertical distribution of aboveground biomass in
forests. Its immediate predecessors are Goddard’s Ice, Cloud, and land
Elevation Satellite (ICESat) and airborne Land, Vegetation and Ice Sensor,
known as LVIS, which is flown on high-altitude aircraft to measure forests,
land topography, ice sheets, glaciers and sea ice.
“Lidar has the unique ability to peer into the tree canopy to precisely
measure the height and internal structure of the forest at the fine scale
required to accurately estimate their carbon content,” said Bryan Blair, the
deputy principal investigator for GEDI at Goddard.
GEDI will carry a trio of specialized lasers, developed in-house at
Goddard, and will use sophisticated optics to divide the three beams out into
14 tracks on the ground. Together, these tracks will be spaced 1,640 feet (500
meters) apart on the surface creating a total swath width of about 4 miles (6.5
kilometers). GEDI will sample all of the land between 50 degrees north latitude
and 50 degrees south latitude this way, covering nearly all tropical and
temperate forests.
The lasers will illuminate the surface with brief pulses of light that
are optimized to pass through the canopy of even very dense forests without
causing harm. (The lasers are eye-safe.) The team estimates that the instrument
will send out 16 billion pulses in one year.
A small fraction of each pulse – the return pulse – is reflected back
to a detector on the orbiting instrument. The amount of time it takes to
complete this round trip is measured precisely and converted into a distance.
In addition, the materials that a pulse encounters along the way will modify
the signal slightly, resulting in a different fingerprint or vertical profile
when a pulse interacts with leafy tree tops versus woody branches and trunks or
the ground.
These fingerprints will provide enough detail to measure the height of
the trees and where the tree canopy begins with an accuracy of about 3-1/3 feet
(1 meter). From this information, scientists will be able to estimate how much
biomass the trees contain and, in turn, how much carbon they are storing.
By combining these findings with spatially comprehensive maps from
other satellites showing where development and deforestation are taking place,
or with studies that reveal the composition of forests, scientists will have a
more powerful tool set for addressing questions about land use, habitat
diversity and climate effects. For example, researchers will be able to relate
forest architecture with habitat quality and the biodiversity of certain birds.
They also may be able to estimate the age of trees in specific forests. The
ultimate goal, Dubayah said, is to be able to monitor these and other changes
in forests over time.
GEDI is scheduled to be completed in 2018. NASA’s Earth Venture
Instrument program is part of the Earth System Science Pathfinder program,
managed by NASA’s Langley Research Center in Hampton, Virginia, for NASA’s
Science Mission Directorate. The GEDI team includes co-investigators from
Goddard; Woods Hole Research Center, Woods Hole, Massachusetts; the U.S. Forest
Service, Ogden, Utah; and Brown University, Providence, Rhode Island.
No comments:
Post a Comment